

Tetrahedron 57 (2001) 265-271

Formation and reaction of *N*-acyl- and *N*-methanesulfonyl-1-(3,4-dimethoxy)benzyl-7-acetoxy-1,2,3,4,6,7-hexahydro-7-methoxy-6-oxoisoquinolines (*o*-quinol acetates)

Osamu Hoshino,* Masaji Suzuki and Hiromichi Ogasawara

Faculty of Pharmaceutical Sciences, Science University of Tokyo, 12 Ichigaya Funagwara-machi, Shinjuku-ku, Tokyo 162-0826, Japan

Received 24 March 2000; revised 30 May 2000; accepted 10 July 2000

Abstract—Oxidation of *N*-acyl- and *N*-methanesulfonyl-1,2,3,4-tetrahydro-7-methoxyisoquinolin-6-ols (7) with lead tetraacetate in dichloromethane produced quantitatively title compounds (*o*-QAs) (8). Treatment of *N*-trifluoroacetyl and *N*-formyl *o*-QAs (8a,b) with acetic acid at $30-40^{\circ}$ C afforded *N*-trifluoroacetyl and *N*-formyl *p*-QAs (9a,b), while that of *N*-acetyl, *N*-ethoxycarbonyl and *N*-methane-sulfonyl congeners (8c–e) gave *N*,*N*-dialkylacetamide (10c), ethyl *N*,*N*-dialkylcarbamate (10d), and *N*,*N*-dialkylmethanesulfonamide (10e), which are formed by elimination of a benzylic proton and subsequent cleavage of a C1–C8a bond in 9c–e. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is known that lead tetraacetate (LTA) oxidation of tetrahydroisoquinolinols gives the corresponding acetoxyhexahydrooxoisoquinolines (*o*- or *p*-quinol acetates)¹ having a dienone moiety, which are valuable intermediates for synthesis of isoquinoline alkaloids.^{2,3} Recently we have reported that oxidation of *N*-acyl- and *N*-methanesulfonyl-1-(3,4-dimethoxy)benzyl-1,2,3,4-tetrahydro-6-methoxyisoquinolin-7-ols (**1**) with LTA in dichloromethane (CH₂Cl₂) gives quantitatively the corresponding *o*-quinol acetates (*o*-QAs) (**2**), treatment of which with trifluoroacetic acid (CF₃CO₂H) in CH₂Cl₂ affords *N*-acylnoraporphines (**3**) or *N*-acyl- and *N*-methanesulfonyl-phenanthrenes (**4**) (Scheme 1).⁴ These findings focused our attention on a series of reaction of *N*-acyl- and *N*-methanesulfonyl-1-(3,4-dimethoxy)benzyl-1,2,3,4-tetrahydro-7-methoxyiso-quinolin-6-ols (**7**), which are a phenolic regioisomer of **1**, because formation of *N*-acyl and *N*-methanesulfonyl *o*-QAs from **7** could lead to the development of a novel methodology

Scheme 1.

Keywords: lead tetraacetate oxidation; N-acyltetrahydroisoquinolin-6-ol; N-acyl o- and p-quinol acetate.

^{*} Corresponding author. Tel.: +81-33260-6725; fax: +81-33268-3045; e-mail: hoshino@ps.kagu.sut.ac.jp

a R = COCF₃; b R = CHO; c R = Ac; d R = CO₂Et; e R = SO₂Me

Scheme 2.

using LTA for synthesis in the tetrahydroisoquinolinol field. The present paper deals with formation and reaction of N-acyl and N-methanesulfonyl o-QAs (8).

2. Results and discussion

2.1. Formation of N-acyl and N-methanesulfonyl o-QAs (8)

The starting materials, *N*-acyl- and *N*-methanesulfonyl-1-(3,4-dimethoxy)benzyl-1,2,3,4-tetrahydro-7-methoxyisoquinolin-6-ols (7) are prepared as follows. *N*-Acylation and *N*-methanesulfonylation of 6-benzyloxytetrahydroisoquinoline (5)⁵ with trifluoroacetic anhydride, acetic anhydride, ethyl chloroformate, and methanesulfonyl chloride under basic conditions gave the corresponding *N*-acyl- and *N*-methanesulfonyl-tetrahydroisoquinolines (**6a,c-e**). The *N*-formyl congener (**6b**) was obtained by refluxing **5** in ethyl formate. Furthermore, their debenzylation with catalytic hydrogenation produced **7** in good yields (Scheme 2).

With 7 in hand, LTA oxidation in a manner similar to that reported previously^{3a} was carried out. Oxidation of **7a** with LTA (1.1–1.2 equiv.) in CH₂Cl₂ at room temperature for 0.5 h gave quantitatively an oily product, IR (CHCl₃) and ¹H NMR spectra of which showed absorption bands at 1740 and 1680 cm⁻¹ and two peaks due to an acetoxyl group at δ 2.05, 2.08 (3H, each s) and two peaks due to a methoxyl group at δ 3.28, 3.40 (3H, each s). The spectral data supported the assignment of the products as a diastereomeric mixture as well as the assignment of overall structure as *N*-trifluoroacetyl-1-(3,4-dimethoxy)benzyl-7-acetoxy-1,2,3, 4,6,7-hexahydro-7-methoxy-6-oxoisoquinoline (*o*-QA) (**8a**).

The analogous reaction of 7b-e produced *N*-acyl and *N*-methanesulfonyl *o*-QAs (8b-e), the structures of which were confirmed by spectral evidence (IR, ¹H NMR) (see Experimental). As expected, it was found that oxidation of 7 afforded readily *N*-acyl and *N*-methanesulfonyl *o*-QAs (8) (Scheme 3) in a manner similar to that observed with 1. The stability of *o*-QAs (8) was similar to that of *o*-QAs (2).

2.2. Reaction of N-acyl and N-methanesulfonyl o-QAs (8)

Treatment of **2** with CF₃CO₂H in CH₂Cl₂ at room temperature is found to produce *N*-acylnoraporphines (**3a**–**c**) or *N*-ethoxycarbonyl- and *N*-methanesulfonyl-phenanthrenes (**4d**,**e**) (Scheme 1).⁴ Thus, the reaction of **8a** with CF₃CO₂H in CH₂Cl₂ or CH₃CN at room temperature was examined. Surprisingly, each reaction afforded a complex reaction mixture. With Ac₂O-concentrated H₂SO₄,⁶ the reaction was also unsuccessful. The reaction of **8a** in refluxing CH₂Cl₂ and CHCl₃,or at 60°C (neat),⁷ did not proceed.

After several unfruitful attempts, treatment of **8a** with AcOH^{8,9} at 30–40°C for 3 h gave a crystalline product (mp 165–167°C), the IR (CHCl₃) and the ¹H NMR spectra showed absorption bands at 1745, 1675, 1650, 1625 cm⁻¹ and a peak due to an acetoxyl group at δ 2.01 (3H, s) and two peaks due to a methoxyl group at δ 3.26, 3.52 (3H, each s), respectively. The spectral and microanalytical data supported the assignment of the products as a diastereomeric

c R = Ac; **d** $R = CO_2Et$; **e** $R = SO_2Me$

Scheme 5.

Scheme 4.

mixture, the structure of which was *N*-trifluoroacetyl-1-(3,4dimethoxy)benzyl-8a-acetoxy-1,2,3,4,6,8a-hexahydro-7methoxy-6-oxoisoquinoline (*p*-QA) (**9a**) (Scheme 3). Furthermore, the structure was confirmed chemically by conversion of **9a** into **7a** by reduction with NaBH₄ in MeOH¹⁰ (Scheme 4).

It is notable that *N*-trifluoroacetyl *p*-QA (**9a**) was obtained, in contrast to the findings⁷ that *N*-methyl *p*-QA (**15**) cannot be isolated in the case of *N*-methyl *o*-QA (**12**) (Scheme 6). The similar reaction of **8b** produced *p*-QA (**9b**). Unexpectedly, however, the reaction of **8c** in warm AcOH did not give *p*-QA (**9c**), but rather an *N*,*N*-dialkylacetamide containing product. The IR spectrum exhibited absorption bands at 3550, 1760, 1670 cm⁻¹. Furthermore, the ¹H NMR spectrum showed two pairs of two peaks due to two acetyl groups at δ 2.08, 2.24, 2.29, 2.32 (6H, each s) and four pairs of two peaks at δ 5.90, 5.93 (1H, *J*=14.3 Hz, each d) and 7.00, 7.86 (1H, *J*=14.3 Hz, each d) due to *trans*-olefinic protons. Thus, the spectral data supported the structure *N*-[2-(2-acetoxy-5-

hydroxy-4-methoxyphenyl)ethyl]-*N*-[2-(3,4-dimethoxyphenyl)ethenyl]acetamide (**10c**). The analogous reactions of **8d**,**e** gave also the corresponding amides (**10d**,**e**) (Scheme 3), the IR and ¹H NMR spectra of which indicated the presence of hydroxyl and acetoxyl groups and a *trans*-olefin moiety in the case of **10c** (Scheme 3).

A reaction pathway for formation of 10c-e is depicted in Scheme 5. Namely, *N*-acyl and *N*-methanesulfonyl *p*-QAs (9c-e), which would be formed initially by the reaction of *N*-acyl and *N*-methanesulfonyl *o*-QAs (8c-e) in warm AcOH, undergo elimination of a benzylic proton and subsequent cleavage of the C1–C8a bond to give rise to amides (10c-e). This transformation appears to be remarkably dependent on the nature (probably the inductive effect) of the *N*-substituents.

It is noteworthy that the present reaction of *N*-acyl and *N*-methanesulfonyl *o*-QAs showed chemical behavior different from that of the *N*-methyl *o*-QAs (**12**) (derived from **11**), in which 4-acetoxy product (**13**)⁷or *O*-acetyl-aporphines (**14**)⁶ are formed under warming or acidic conditions (Scheme 6). The results would be attributable to the inductive effect of *N*-substituents, because elimination of a benzylic proton takes place more readily.

In conclusion, it was found that LTA oxidation of *N*-acyland *N*-methanesulfonyl-tetrahydroisoquinolin-6-ols (7) gave corresponding *o*-QAs (8) similar to that of *N*-acyland *N*-methanesulfonyl-tetrahydroisoquinolin-7-ols (1) and their reaction in warm AcOH produced novel *N*-trifluoroacetyl and *N*-formyl *p*-QAs (9a,b) or *N*-acetyl-, *N*-ethoxycarbonyl-, and *N*-methanesulfonylamides (10c-e) depending on the nature of the *N*-substituents in the *o*-QAs. Furthermore, the chemical behavior of *N*-acyl *o*-QAs (8a-d) was distinctly different from that of *N*-methyl *o*-QA (12).¹¹

Further examination on the effect of *N*-acyl groups in the reactions of *o*-QAs is in progress.

3. Experimental

All melting points were measured on Büchi melting point measuring apparatus and are uncorrected. ¹H NMR spectra were recorded on a JOEL JNM-FX 100 (100 MHz) instrument in CDCl₃ solution using tetramethylsilane as internal standard. IR spectra were measured on a Hitachi model 260-10 spectrophotometer in CHCl₃ solution. Mass spectra were taken with a Hitachi RMU-7M or M-80 instrument. Preparative TLC was performed on Merck Kieselgel $60F_{254}$ plates (20×20×0.5 cm).

3.1. A general procedure for preparation of *N*-acyl- and *N*-methanesulfonyl-1-(3,4-dimethoxy)benzyl-1,2,3,4-tetrahydro-6-benzyloxy-7-methoxyisoquinolines (6)

A mixture of 5,⁵ acetic anhydride or ethyl chloroformate or methanesulfonyl chloride, and K₂CO₃ in CH₂Cl₂ was stirred at room temperature for 0.5–2 h (except for **6b**). After addition of water to the reaction mixture, the product was taken up in CH₂Cl₂. Usual work-up of the organic layer gave solid product, which was purified by recrystallization. **3.1.1.** *N*-Trifluoroacetyl-1-(3,4-dimethoxy)benzyl-1,2,3,4tetrahydro-6-benzyloxy-7-methoxyisoquinoline (6a). 5 (1.08 g, 2.6 mmol), trifluoroacetic anhydride (1.0 mL, 3.2 mmol), K₂CO₃ (0.524 g, 3.8 mmol), and CH₂Cl₂ (20 mL) were used (reaction time: 0.5 h): 6a (1.07 g, 82%), mp 139–141°C (EtOH). Anal. Calcd for C₂₈H₂₈NO₅F₃: C, 65.23; H, 5.47; N, 2.72; F, 11.06. Found: C, 65.37; H, 5.52; N, 2.79; F, 10.92. MS *m*/*z*: 515 (M⁺); IR ν : 1675 cm⁻¹; ¹H NMR δ : 3.68, 3.76, 3.82 (each 3H, s), 5.55 (1H, t, *J*=7.4 Hz), 6.24–6.84, 7.10–7.60 (each 5H, m).

3.1.2. *N*-Formyl-1-(3,4-dimethoxy)benzyl-1,2,3,4-tetrahydro-6-benzyloxy-7-methoxyisoquinoline (6b). A solution of **5** (1.0 g, 2.4 mmol) in ethyl formate (20 mL) was refluxed for 3 h. Removal of excess ethyl formate in vacuo gave **6b** (0.89 g, 83%), mp 106–108°C (EtOH). Anal. Calcd for C₂₇H₂₉NO₅: C, 72.46; H, 6.53; N, 3.13. Found: C, 72.53; H, 6.59; N, 3.24. MS *m*/*z*: 447 (M⁺); IR ν : 1650 cm⁻¹; ¹H NMR δ : 3.68, 3.72, 3.82, 3.84 (9H, each s,), 4.28–4.64 (2H, m), 5.08, 5.10 (2H, each s), 6.22–6.86, 7.04–7.50 (each 5H, m), 7.64, 8.07 (1H, each s).

3.1.3. *N*-Acetyl-1-(3,4-dimethoxy)benzyl-1,2,3,4-tetrahydro-6-benzyloxy-7-methoxyisoquinoline (6c). 5 (0.69 g, 1.6 mmol), acetic anhydride (1.68 g, 16.5 mmol), K₂CO₃ (2.28 g, 16.5 mmol), and CH₂Cl₂ (10 mL) were used (reaction time: 1 h): **6c** (0.39 g, 51%), mp 174–175°C (benzene). Anal. Calcd for C₂₈H₃₁NO₅: C, 72.86; H, 6.77; N, 3.03. Found: C, 72.84; H, 6.68; N, 2.87. MS *m*/*z*: 418 (M⁺-43); IR ν : 1620 cm⁻¹; ¹H NMR δ : 1.62, 2.12 (3H, each s), 3.62, 3.74, 3.83 (each 3H, s.), 4.52–4.86 (1H, m), 5.08, 5.10 (2H, each s), 6.14–6.88, 7.08–7.50 (each 5H, m).

3.1.4. *N*-Ethoxycarbonyl-1-(3,4-dimethoxy)benzyl-1,2,3,4tetrahydro-6-benzyloxy-7-methoxyisoquinoline (6d). 5 (1.08 g, 2.8 mmol), ethyl chloroformate (0.56 g, 5.2 mmol), K₂CO₃ (0.71 g, 5.2 mmol), and CH₂Cl₂ (20 mL) were used (reaction time: 1 h): 6d (1.03 g, 82%), mp 174–175°C (EtOH). Anal. Calcd for C₂₉H₃₃NO₆: C, 70.86; H, 6.77; N, 2.85. Found: C, 70.88; H, 6.73; N, 3.07. MS *m*/*z*: 446 (M⁺-45); IR ν : 1670 cm⁻¹; ¹H NMR δ : 1.13, 1.24 (3H, each t, *J*=7.1 Hz), 3.62, 3.82, 3.87, 3.93 (9H, each s), 4.88–5.34 (3H, m), 6.08–7.48 (10H, m).

3.1.5. *N*-Methanesulfonyl-1-(3,4-dimethoxy)benzyl-1,2,3,4tetrahydro-6-benzyloxy-7-methoxyisoquinoline (6e). 5 (0.94 g, 2.2 mmol), methanesulfonyl chloride (1.9 mL, 11.4 mmol), K₂CO₃ (3.37 g, 24.4 mmol), and CH₂Cl₂ (20 mL) were used (reaction time: 2 h): **6e** (1.04 g, 95%), mp 163–165°C (EtOH). Anal. Calcd for C₂₇H₃₁NO₆S: C, 65.17; H, 6.28; N, 2.81; S, 6.43. Found: C, 65.24; H, 6.45; N, 2.84; S, 6.48. MS *m/z*: 346 (M⁺-151); IR ν : 1310, 1140 cm⁻¹; ¹H NMR δ : 2.47 (3H, s), 3.71, 3.80, 3.84 (each 3H, s), 4.96 (1H, t, *J*=7.1 Hz), 5.08 (2H, s), 6.32– 6.86, 7.04–7.50 (each 5H, m).

3.2. A general procedure for preparation of *N*-acyl- and *N*-methanesulfonyl-1-(3,4-dimethoxy)benzyl-1,2,3,4-tetrahydro-7-methoxyisoquinolin-6-ols (7)

A mixture of **6** and 10% Pd–C in AcOEt (for **6a,b,d,e**) or AcOEt–CHCl₃ (for **6c**) was shaken with hydrogen (1 atm) at room temperature for 2 h. After filtration of catalyst

followed by removal of the solvent gave a solid, which was purified by recrystallization.

3.2.1. *N*-Trifluoroacetyl-1-(3,4-dimethoxy)benzyl-1,2,3,4tetrahydro-7-methoxyisoquinolin-6-ol (7a). 6a (1.02 g, 2.0 mmol), 10% Pd–C (0.42 g), and AcOEt (50 mL) were used: 7a (0.784 g, 93%), mp 148–149°C (benzene). Anal. Calcd for C₂₁H₂₂NO₅F₃: C, 59.29; H, 5.21; N, 3.29; F, 13.40. Found: C, 59.29; H, 5.19; N, 3.40; F, 13.46. MS *m/z*: 425 (M⁺); IR ν : 3530, 1675 cm⁻¹; ¹H NMR δ : 3.68, 3.76, 3.83 (each 3H, s), 5.36–5.60 (2H, m), 6.20–6.84 (5H, m).

3.2.2. *N*-Formyl-1-(3,4-dimethoxy)benzyl-1,2,3,4-tetrahydro-7-methoxyisoquinolin-6-ol (7b). 6b (1.3 g, 2.9 mmol), 10% Pd–C (0.62 g), and AcOEt (50 mL) were used: **7b** (0.9 g, 86%), mp 177–179°C (benzene). HRMS m/z Calcd for C₂₀H₂₃NO₅ (M⁺): 357.1574. Found: C, 357.1552. MS m/z: 357 (M⁺); IR ν : 3530, 1650 cm^{-1; 1}H NMR δ : 3.66, 3.76, 3.84 (each 3H, s), 6.22–6.83 (5H, m), 7.66, 8.08 (1H, each s).

3.2.3. *N*-Acetyl-1-(3,4-dimethoxy)benzyl-1,2,3,4-tetrahydro-7-methoxyisoquinolin-6-ol (7c). 6c (1.06 g, 2.3 mmol), 10% Pd–C (0.42 g), and AcOEt (20 mL)-CHCl₃ (30 mL) were used: **7c** (0.734 g, 86%), mp 141– 142°C (benzene–ether). Anal. Calcd for $C_{21}H_{25}NO_5$: C, 67.91; H, 6.78; N, 3.77. Found: C, 67.81; H, 6.74; N, 3.84. MS *m*/*z*: 371 (M⁺); IR ν : 3530, 1620 cm⁻¹; ¹H NMR δ : 1.61, 2.12 (3H, each s), 3.60, 3.76, 3.83 (each 3H), 4.56–4.85 (1H, m), 5.40–5.65 (2H, m), 6.09–6.88 (5H, m).

3.2.4. *N*-Ethoxycarbonyl-1-(3,4-dimethoxy)benzyl-1,2,3,4tetrahydro-7-methoxyisoquinolin-6-ol (7d). 6d (0.93 g, 1.9 mmol), 10% Pd–C (0.37 g), and AcOEt (50 mL) were used: 7d (0.737 g, 99%), mp 80–95°C (benzene). Anal. Calcd for $C_{22}H_{27}NO_6$ ·0.5H₂O: C, 64.38; H, 6.88; N, 3.41. Found: C, 64.24; H, 6.62; N, 3.51. MS *m*/*z*: 400 (M⁺-1); IR ν : 3430, 1670 cm⁻¹; ¹H NMR δ : 1.15, 1.24 (3H, each t, *J*=7.1 Hz), 3.60, 3.69, 3.76, 3.78, 3.84 (9H, each s), 4.87– 5.28 (1H, m), 6.07–6.84 (5H, m).

3.2.5. *N*-Methanesulfonyl-1-(3,4-dimethoxy)benzyl-1,2,3,4tetrahydro-7-methoxyisoquinolin-6-ol (7e). 6e (0.91 g, 1.8 mmol), 10% Pd–C (0.39 g), and AcOEt (50 mL) were used: **7e** (0.59 g, 84%), mp 170–171°C (benzene). Anal. Calcd for C₂₀H₂₅NO₆S: C, 58.95; H, 6.18; N, 3.44; S, 7.87. Found: C, 59.10; H, 6.18; N, 3.60; S, 7.87. MS *m*/*z*: 407 (M⁺); IR ν : 3530, 1310, 1140 cm⁻¹; ¹H NMR δ : 2.49 (3H, s), 3.70, 3.81, 3.84 (each 3H, s), 5.94 (1H, t, *J*=7.1 Hz), 6.21–6.82 (5H, m).

3.3. A general procedure for formation of *N*-acyl- and *N*-methanesulfonyl-1-(3,4-dimethoxy)benzyl-6-acetoxy-1,2,3,4,6,7-hexahydro-7-methoxy-6-oxoisoquinolines (8) (*o*-quinol acetates)

The reaction of **7** with Pb(OAc)₄ in CH₂Cl₂ was carried out in a manner reported previously^{3a} (reaction time: 0.5 h) to produce quantitatively *o*-quinol acetates (**8**), which were used in the next reaction without further purification.

3.3.1. *N*-Trifluoroacetyl-1-(3,4-dimethoxy)benzyl-7-acetoxy-1,2,3,4,6,7-hexahydro-7-methoxy-6-oxoisoquinoline (8a). 7a (100 mg, 0.24 mmol), Pb(OAc)₄ (127 mg, 0.29 mmol), and CH₂Cl₂ (1 mL) were used: 8a (oil); IR ν : 1740, 1680 cm⁻¹; ¹H NMR δ : 2.05, 2.08 (3H, each s), 3.28, 3.40 (3H, each s), 3.84 (6H, s), 4.92–5.18 (1H, m), 5.60–5.74, 5.86–6.07 (each 1H, m), 6.52–6.84 (3H, m).

3.3.2. *N*-Formyl-1-(3,4-dimethoxy)benzyl-7-acetoxy-1,2,3, **4,6,7-hexahydro-7-methoxy-6-oxoisoquinoline** (**8b**). **7b** (100 mg, 0.28 mmol), Pb(OAc)₄ (149 mg, 0.34 mmol), and CH₂Cl₂ (5 mL) were used: **8b** (oil); IR ν : 1740, 1670 cm⁻¹; ¹H NMR δ : 2.05, 2.08, 2.10 (3H, each s), 3.32, 3.40, 3.42 (3H, each s), 3.84 (6H, s), 5.00–5.32 (1H, m), 5.60–6.04 (2H, m), 6.50–6.84 (3H, m), 7.69, 8.78, 8.12 (1H, each s).

3.3.3. *N*-Acetyl-1-(3,4-dimethoxy)benzyl-7-acetoxy-1,2,3, **4,6,7-hexahydro-7-methoxy-6-oxoisoquinoline** (8c). 7c (100 mg, 0.27 mmol), Pb(OAc)₄ (143 mg, 0.32 mmol), and CH₂Cl₂ (5 mL) were used: 8c (oil); IR ν : 1740, 1685, 1640 cm⁻¹; ¹H NMR δ : 2.02, 2.04, 2.08, 2.12, 2.14 (6H, each s), 3.20, 3.32 (3H, each s), 3.83, 3.85 (each 3H, s), 4.98–5.32 (1H, m), 5.48–6.02 (2H, m), 6.48–6.88 (3H, m).

3.3.4. *N*-Ethoxycarbonyl-1-(3,4-dimethoxy)benzyl-7-acetoxy-1,2,3,4,6,7-hexahydro-7-methoxy-6-oxoisoquinoline (8d). 7d (100 mg, 0.25 mmol), Pb(OAc)₄ (133 mg, 0.30 mmol), and CH₂Cl₂ (5 mL) were used: 8d (oil); IR ν : 1740, 1680 cm⁻¹; ¹H NMR δ : 1.28, 1.29 (3H, each t, J=7.1 Hz), 2.08, 2.28 (3H, each s), 3.20, 3.38 (3H, each s), 3.84 (6H, s), 5.44–5.68 (1H, m), 5.48–6.00 (2H, m), 6.48–6.92 (3H, m).

3.3.5. *N*-Methanesulfonyl-1-(3,4-dimethoxy)benzyl-7-acetoxy-1,2,3,4,6,7-hexahydro-7-methoxy-6-oxoisoquinoline (8e). 7e (100 mg, 0.25 mmol), Pb(OAc)₄ (139 mg, 0.31 mmol), and CH₂Cl₂ (1 mL) were used: 8e (oil); IR ν : 1740, 1680 cm⁻¹; ¹H NMR δ : 2.04, 2.08 (3H, each s), 2.60, 2.88 (3H, each s), 3.24, 3.40 (3H, each s), 3.84, 3.85 (each 3H, s), 4.48–4.86 (1H, m), 5.64, 5.72 (1H, each s), 5.84– 6.04 (1H, m), 6.56–6.84 (3H, m).

3.4. A general procedure for the reaction of *o*-QAs (8) with AcOH

A solution of o-QA (8) [prepared from 7] in AcOH was stirred at 30–40°C for 2–3 h. The reaction mixture was diluted with water and basified with 10% aq. Na₂CO₃ solution. The product was taken up in CH₂Cl₂. A residue obtained on usual work-up of the organic layer was purified by preparative TLC (developing solvent: AcOEt:hexane=2:1) or recrystallization.

3.4.1. *N*-**Trifluoroacetyl-1-(3,4-dimethoxy)benzyl-8a-acetoxy-1,2,3,4,6,8a-hexahydro-7-methoxy-6-oxoisoquinoline (9a). 8a [prepared from 7a (100 mg)] and AcOH (10 mL) were used (reaction time: 3 h): 9a (87 mg, 77%), mp 165–167°C (EtOH). Anal. Calcd for C_{23}H_{24}F_{3}NO_{7}: C, 57.14; H, 5.00; N, 2.90; F, 11.79. Found: C, 57.19; H, 5.08; N, 3.09; F, 11.89. MS** *m***/***z***: 483 (M⁺); IR \nu: 1745, 1675, 1650, 1625 cm⁻¹; ¹H NMR \delta: 2.01 (3H, s), 3.26, 3.52 (3H, each s), 3.84 (6H, s), 5.58 (1H, s), 6.08–6.36 (4H, m).** **3.4.2.** *N*-Formyl-1-(3,4-dimethoxy)benzyl-8a-acetoxy-1,2, 3,4,6,8a-hexahydro-7-methoxy-6-oxoisoquinoline (9b). 8b [prepared from 7b (100 mg)] and AcOH (5 mL) were used (reaction time: 2.5 h): 9b (oil, 86 mg, 74%). MS m/z: 415 (M⁺); IR ν : 1750, 1675, 1655, 1630 cm⁻¹; ¹H NMR δ : 2.02, 2.04, 2.32, 2.39 (3H, each s), 3.62, 3.82, 3.84 (9H, each s), 7.80, 7.98, 8.07 (1H, each s).

3.4.3. *N*-[2-(3,4-dimethoxyphenyl)ethenyl]-*N*-[2-(2-acetoxy-5-hydroxy-4-methoxyphenyl)ethyl]acetamide (10c). **8c** [prepared from 7c (100 mg)] and AcOH (5 mL) were used (the reaction time; 2 h): 10c (oil, 66.3 mg, 57.4%). MS *m*/*z*: 429 (M⁺); HRMS *m*/*z* Calcd for C₂₃H₂₇NO₇ (M⁺): 429.1785. Found: 429.1789. IR ν : 3550, 1760, 1670, 1640 cm⁻¹; ¹H NMR δ : 2.08, 2.24, 2.29, 2.32 (6H, each s), 3.84, 3.88, 3.91 (each 3H, s), 5.36–5.68 (1H, m), 5.90, 5.93 (1H, each d, *J*=14.3 Hz), 6.55 (1H, s), 6.65–6.98 (4H, m), 7.00, 7.86 (1H, each d, *J*=14.3 Hz).

3.4.4. Ethyl *N*-[2-(3,4-dimethoxyphenyl)ethenyl]-*N*-[2-(2-acetoxy-5-hydroxy-4-methoxyphenyl)ethyl]carbamate (10d). 8d [prepared from 7d (100 mg)] and AcOH (5 mL) were used (reaction time; 2 h): 10d (oil, 40 mg, 35%). MS *m*/*z*: 459 (M⁺); HRMS *m*/*z* Calcd for C₂₄H₂₉NO₇ (M⁺): 459.1890. Found: 459.1873. IR ν : 3550, 1760, 1700, 1645 cm⁻¹; ¹H NMR δ : 1.30 (3H, t, *J*=7.1 Hz), 2.28 (3H, s), 3.84, 3.86, 3.90 (each 3H, s), 4.22 (2H, q, *J*=7.1 Hz), 5.36–5.62 (1H, m), 5.80 (1H, d, *J*=14.3 Hz), 6.55 (1H, s), 6.60–6.96 (4H, m), 7.24–7.68 (1H, m).

3.4.5. *N*-[**2**-(**3**,**4**-dimethoxyphenyl)ethenyl]-*N*-[**2**-(**2**-acetoxy-**5**-hydroxy-**4**-methoxyphenyl])ethyl]methanesulfonamide (**10e**). **8e** [prepared from **7e** (100 mg)] and AcOH (20 mL) were used (reaction time; 2 h): **10e** (32 mg, 27%), mp 156–158°C (EtOH). MS *m*/*z*: 465 (M⁺). Anal.Calcd for C₂₂H₂₇NO₈S: C, 56.77; H, 5.85; N, 3.01; S, 6.87. Found: C, 56.77; H, 5.75; N, 3.14; S, 6.62. IR ν : 3530, 1750, 1640 cm⁻¹; ¹H NMR δ : 2.18, 2.86 (each 3H, s), 3.84, 3.87, 3.91 (each 3H, s), 5.49 (1H, s), 5.85 (1H, d, *J*=14.9 Hz), 6.46–6.94 (5H, m), 7.06 (1H, d, *J*=14.9 Hz).

3.4.6. Reduction of 9a with NaBH₄. A solution of **9a** (100 mg, 0.21 mmol) and NaBH₄ (78 mg, 2.1 mmol) in MeOH (10 mL) was stirred at 0°C for 10 min. The reaction mixture was acidified with 10% HCl and the product was taken up in CH₂Cl₂. Usual work-up of the organic layer gave an oily residue (74.5 mg), which upon trituration in EtOH produced **7a** (71 mg, 81%), mp 148–149°C (benzene). This compound was identical to an authentic sample by each comparison (¹H NMR, IR, and mixed mp).

Acknowledgements

We are grateful to Sankyo Co. Ltd., for elementary analyses, and also to Ms N. Sawabe and Mrs F. Hasegawa of this Faculty for their ¹H NMR and mass spectral measurements.

References

- 1. For a review: Umezawa, B.; Hoshino, O. *Heterocycles*, **1975**, *3*, 1005.
- Cf. Monographs: (a) Hoshino, O; Umezawa, B. In *The Alkaloids; Chemistry and Pharmacology*; Brossi, A., Ed.; Academic: New York, 1989; Vol. 36, pp 69–134. (b) Hoshino, O. In *Studies in Natural Products Chemistry; Stereoselective Synthesis* (Part J); Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1995; Vol. 16, pp 519–530.
- (a) Hoshino, O.; Ogasawara, H.; Suzuki, M.; Umezawa, B. *Heterocycles*, **1987**, *25*, 151. (b) Hoshino, O.; Ogasawara, H.; Suzuki, M.; Arasawa, M.; Umezawa, B. *Heterocycles*, **1990**, *30*, 385. (c) Hoshino, O.; Ogasawara, H.; Arasawa, M.; Suzuki, M.; Iizima, K. *Heterocycles*, **1993**, *35*, 1005. (d) Ogasawara, H.; Suzuki, M.; Shiohara, T.; Hoshino, O. *Heterocycles*, **1998**, *47*, 921.
- Hoshino, O.; Suzuki, M.; Ogasawara, H. *Heterocycles*, 2000, 52, 751.
- 5. Kametani, T.; Takeshita, M.; Takano, S. J. Chem. Soc., Perkin Trans. 1 1972, 2834.
- Hoshino, O.; Ohtani, M.; Umezawa, B. Chem. Pharm. Bull. 1979, 27, 3101.
- 7. Hoshino, O.; Ohyama, K.; Taga, M.; Umezawa, B. Chem. Pharm. Bull. 1974, 22, 3101.
- 8. The reaction of **8a** in CHCl₃ containing AcOH at room temperature did not take place.
- The reaction of 8a in CHCl₃ containing silicic acid (40 times for weight of 8a) at room temperature for 12 h produced 9a in 33% yield.
- Cf. In our laboratory, treatment of *N*-methyl-4a-acetoxy-1, 2,3,4,4a,7-hexahydro-6-methoxy-7-oxoisoquinoline (*p*-QA) with NaBH₄ in MeOH at room temperature is found to give *N*-methyl-1,2,3,4-tetrahydro-6-methoxyisoquinolin-7-ol (corypalline).
- 11. A chemical behavior different between *N*-methyl *o*-QA (12) and *N*-acyl *o*-QA (8) would be ascribable to the stereoelectronic effect of each *N*-substituent. The former (12), in which the nitrogen atom is an sp³ hybrid orbital, generates an aziridinium intermediate (A) by elimination of an acetoxyl group followed by intramolecularly nucleophilic attack of the nitrogen atom to the C8a position. Furthermore, A leads to 4-acetoxytetrahydroisoquinolinol (13) through B (Scheme 7).¹² On the other hand, the *N*-trifluoroacetyl *o*-QA (8a) generates a carbenium ion (C) by elimination of an acetoxyl

Scheme 8.

group followed by allylic rearrangement, because the nitrogen atom, which is an sp²-like hybrid orbital, cannot attack to the C8a position. Accordingly, **9a** is formed by the intermolecular substitution¹³ of **C** with AcOH (Scheme 8).

- 12. See Ref. 7.
- LTA oxidation of (±)-N-trifluoroacetyl-1,2,3,4-tetrahydro-1-(3,4-dimethoxy)benzyl-6-methoxyisoquinolin-7-ol in (S)-

(+)-2-phenylpropionic acid produces a mixture of diastereoisomers of optically active *N*-trifluoroacetyl *p*-quinol esters [Hara, H.; Komoriya, S.; Miyashita, T.; Hoshino, O. *Tetrahedron: Asymmetry*, **1995**, *6*, 1683]. These findings suggest the transformation of *N*-trifluoroacetyl *o*-QA (**8a**) in AcOH to **9a** to proceed in the intermolecular substitution.